Daily Paper Machine
RSS FeedAn efficient and effective personalized paper recommendation solution.
Recent Papers
Learning Dynamics in Continual Pre-Training for Large Language Models
grok-3-latestScore: 0.77Published: at 17:47本文提出一个 CPT 缩放法则,通过解耦分布偏移和学习率退火的影响,量化持续预训练过程中损失变化规律,并预测任意训练步骤下的性能表现,为超参数优化提供指导。
Overflow Prevention Enhances Long-Context Recurrent LLMs
grok-3-latestScore: 0.79Published: at 17:45本文提出 OPRM,一种训练无关的推理方法,通过分块处理缓解循环模型内存溢出问题,显著提升长上下文任务性能,并保持亚二次方复杂度优势。
Agent RL Scaling Law: Agent RL with Spontaneous Code Execution for Mathematical Problem Solving
grok-3-latestScore: 0.69Published: at 17:23本文通过ZeroTIR框架,揭示了Agent RL Scaling Law,验证了基础LLM可通过强化学习自发学习代码执行工具,显著提升数学推理能力。
Lightweight End-to-end Text-to-speech Synthesis for low resource on-device applications
grok-3-latestScore: 0.56Published: at 16:10本文提出了一种轻量级端到端文本转语音模型(LE2E),通过联合训练声学模型和声码器,在低资源设备上实现了高质量实时语音合成,参数量减少90%且速度提升10倍。
QuantX: A Framework for Hardware-Aware Quantization of Generative AI Workloads
grok-3-latestScore: 0.58Published: at 13:13QuantX 提出了一种硬件感知的量化框架,通过针对权重分布差异和硬件约束设计多种量化策略,将大型语言模型和视觉语言模型量化到3比特,同时保持性能损失在6%以内,显著优于现有方法。
ToolACE-DEV: Self-Improving Tool Learning via Decomposition and EVolution
grok-3-latestScore: 0.71Published: at 12:48本文提出 ToolACE-DEV 框架,通过任务分解和自进化机制显著提升大型语言模型的工具调用能力,减少对高级模型的依赖,并在多个基准数据集上取得优异性能。