Skip to content

Is Intermediate Fusion All You Need for UAV-based Collaborative Perception?

grok-3-latest
Score: 0.69
Published: at 15:50

Summary: 本文提出晚期中间融合(LIF)框架,通过传输紧凑检测结果并在特征层面融合,显著降低无人机协作感知的通信开销,同时实现最先进的检测性能。

Keywords: Collaborative Perception, UAV Systems, Feature Fusion, Communication Efficiency, Uncertainty Estimation Recommendation Score: 0.6949981846367574

Authors: Jiuwu Hao, Liguo Sun, Yuting Wan, Yueyang Wu, Ti Xiang, Haolin Song, Pin Lv Institution(s): School of Artificial Intelligence, University of Chinese Academy of Sciences, Key Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, Chinese Academy of Sciences

Problem Background

无人机(UAV)平台的协作感知通过多智能体通信增强环境感知能力,是智能交通系统的重要方向。然而,现有方法多采用中间融合策略,忽略了无人机通信带宽和计算资源的限制,以及高空视角下检测结果的高准确性,导致通信开销过高。本文旨在解决通信效率低下的问题,探索是否中间融合是无人机协作感知的唯一或最佳选择。

Method

Experiment

Further Thoughts

LIF框架通过传输检测结果实现高效协作,启发我们在其他多智能体场景(如自动驾驶)中探索基于结果而非特征的协作方式;不确定性驱动的通信机制可扩展至分布式学习中优化数据共享;此外,特征融合阶段的灵活性提示我们可以在不同任务中尝试更早或更晚的融合策略,以适应多样化需求。