Skip to content

Is Intermediate Fusion All You Need for UAV-based Collaborative Perception?

grok-3-latest
Score: 0.30
Published: at 16:22

Summary: 本文提出了一种通信高效的多无人机协作感知框架 LIF,通过后期-中间融合策略共享紧凑检测结果并整合特征,显著降低通信开销同时实现高性能3D目标检测。

Keywords: Collaborative Perception, UAV Systems, Fusion Strategy, Communication Efficiency, Feature Enhancement

Authors: Jiuwu Hao, Liguo Sun, Yuting Wan, Yueyang Wu, Ti Xiang, Haolin Song, Pin Lv

Institution(s): School of Artificial Intelligence, University of Chinese Academy of Sciences, Key Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, Chinese Academy of Sciences

Problem Background

无人机(UAV)平台的协作感知通过多智能体间通信增强环境感知能力,是智能交通系统的重要方向。然而,现有方法多源自自动驾驶领域,忽略了无人机平台的通信容量和计算资源限制,以及高空视角下更准确预测的特性,导致通信开销过高。本文旨在探索一种通信高效的协作感知框架,解决带宽受限场景下的多无人机协作问题。

Method

Experiment

Further Thoughts

LIF 框架揭示了在资源受限场景下,紧凑检测结果结合适当融合机制即可实现高效协作的潜力,这可推广至其他领域(如物联网设备协作)。不确定性驱动的通信机制为多智能体系统提供了一种智能信息筛选思路,值得在动态通信优化中进一步探索。此外,支持异构协作的设计为实际多设备协作场景提供了灵活性,启发我们在模型兼容性上做更多尝试。