Tag: LLM
All the papers with the tag "LLM".
Rethinking Invariance in In-context Learning
grok-3-latestScore: 0.66Published: at 06:59本文提出 Invariant In-Context Learning (InvICL) 算法,通过设计不变性注意力掩码和两阶段编码策略,实现上下文学习对顺序的不变性,同时确保信息不泄露和上下文相互依赖,显著提升性能和泛化能力。
ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning
grok-3-latestScore: 0.70Published: at 01:40本文提出 ConCISE 框架,通过信心 引导的推理压缩方法,显著减少大型推理模型的推理链冗余,同时保持高准确率,为高效推理提供了新途径。
GroverGPT-2: Simulating Grover's Algorithm via Chain-of-Thought Reasoning and Quantum-Native Tokenization
grok-3-latestScore: 0.52Published: at 01:38本文提出GroverGPT-2,通过量子原生分词和思维链推理,利用大型语言模型高效模拟Grover量子搜索算法,展示了经典机器内化量子逻辑的潜力,为探索经典与量子计算边界提供了新工具。
Fight Fire with Fire: Defending Against Malicious RL Fine-Tuning via Reward Neutralization
grok-3-latestScore: 0.66Published: at 17:18本文提出Reward Neutralization框架,通过训练模型生成最小信息拒绝来中和恶意RL微调的奖励信号,显著提升开源模型在攻击下的安全性。
OBLIVIATE: Robust and Practical Machine Unlearning for Large Language Models
grok-3-latestScore: 0.74Published: at 13:51OBLIVIATE 提出了一种鲁棒且实用的 LLM 遗忘框架,通过掩码、蒸馏和世界事实损失结合上下文感知遗忘,有效移除目标数据并保持模型性能和流畅性。
YABLoCo: Yet Another Benchmark for Long Context Code Generation
grok-3-latestScore: 0.65Published: at 13:42YABLoCo 提出一个针对 C/C++ 语言的大型代码库代码生成基准,填补长上下文评估空白,并通过实验验证上下文对 LLMs 性能的显著影响。