Tag: Post-Training
All the papers with the tag "Post-Training".
QuantX: A Framework for Hardware-Aware Quantization of Generative AI Workloads
grok-3-latestScore: 0.58Published: at 13:13QuantX 提出了一种硬件感知的量化框架,通过针对权重分布差异和硬件约束设计多种量化策略,将大型语言模型和视觉语言模型量化到3比特,同时保持性能损失在6%以内,显著优于现有方法。
Scalable Chain of Thoughts via Elastic Reasoning
grok-3-latestScore: 0.69Published: at 15:01本文提出 Elastic Reasoning 框架,通过将推理分为思考和解决方案两阶段并结合预算约束训练,使大型推理模型在严格资源限制下仍能高效推理,同时降低训练成本并提升泛化能力。
X-Reasoner: Towards Generalizable Reasoning Across Modalities and Domains
grok-3-latestScore: 0.48Published: at 21:08本文提出 X-REASONER,通过仅基于通用领域文本的两阶段后训练策略(SFT + RL),成功实现推理能力跨模态和跨领域泛化,并在多个通用和医学基准测试中超越现有 SOTA。
Pack-PTQ: Advancing Post-training Quantization of Neural Networks by Pack-wise Reconstruction
grok-3-latestScore: 0.48Published: at 02:53本文提出 Pack-PTQ 方法,通过 Hessian-guided 打包机制和包级混合精度量化策略,显著提升低比特后训练量化的性能,同时捕捉跨块依赖性。